

basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

SENIOR CERTIFICATE EXAMINATIONS/ NATIONAL SENIOR CERTIFICATE EXAMINATIONS

MECHANICAL TECHNOLOGY: FITTING AND MACHINING

MAY/JUNE 2024

MARKING GUIDELINES

MARKS: 200

These marking guidelines consist of 22 pages.

Copyright reserved

Please turn over

QUESTION 1: MULTIPLE-CHOICE QUESTIONS (GENERIC)

1.6	C ✓	(1) [6]
	C ✓	(1)
1.4	D ✓	(1)
1.3	A ✓	(1)
1.2	B✓	(1)
1.1	A ✓	(1)

(Any 2 x 1)

(2)

QUESTION 2: SAFETY (GENERIC)

2.1 First aid:

- When illness occurs. ✓
- When an injury is sustained. ✓
- When an accident occurs. ✓

2.2 **Bench grinder:**

- A. A fire extinguisher should be readily available. \checkmark
- B. Safety glasses must be worn. ✓
- C. Maximum grinding wheel speed. ✓
- D. Maximum distance between tool rest and grinding wheel. \checkmark (4)

2.3 **Drill press:**

- Never try to stop/hold the work piece by hand when the drill bit get stuck during drilling. ✓
- Don't force a drill bit into the work piece. ✓
- Keep loose clothing and hair away from revolving parts. ✓
- Never leave the machine running if it is unattended. ✓
- Use a brush or wooden rod to remove chips from the drill. \checkmark
- Do not put hands near moving parts. ✓
- Never clean or adjust the machine while it is in motion. ✓
- Never try to stop the drill/chuck by hand. ✓

(Any 2 x 1) (2)

2.4 **Surface grinder:**

- Never clean or adjust the machine while it is in motion. ✓
- Know how to stop the machine in an emergency. ✓
- Do not use excessive force when grinding the work piece. \checkmark
- Immediately report any dangerous defects of the machine. ✓
- Stop using defective machinery until it has been repaired by a qualified person. ✓
- Ensure that the grinding wheel is not submerged in coolant. ✓
- Never leave the machine running if it is unattended.
- Do not put hands near moving parts. ✓

(Any 2 x 1) (2) [10]

QUESTION 3: MATERIALS (GENERIC)

3.1	Critical te	emperature:		
	3.1.1	Hardening: Above ✓		(1)
	3.1.2	Tempering: Below ✓		(1)
	3.1.3	Normalising: Above ✓		(1)
3.2		g test: nips heating colour ✓ nips curl ✓		(2)
3.3	 Bendir Filing t Hardne Densit Weight Magne Visual 	test ✓ ng test ✓	(Any 3 x 1)	(3)
3.4				
	• Oyanic		(Any 2 x 1)	(2)
3.5	 Pyrom Crayor Visuall	ns ✓ y ✓		
	 Magne 		(Any 1 x 1)	(1)
3.6	Heat the second se	tment steps: ne metal.		
	Cool th	ne metal. ✓		(3) [14]

QUESTION 4: MULTIPLE-CHOICE QUESTIONS (SPECIFIC)

4.1	B✓	(1)
4.2	C✓	(1)
4.3	B✓	(1)
4.4	C✓	(1)
4.5	D✓	(1)
4.6	D✓	(1)
4.7	C✓	(1)
4.8	A✓	(1)
4.9	B✓	(1)
4.10	A✓	(1)
4.11	B✓	(1)
4.12	A✓	(1)
4.13	A✓	(1)
4.14	D✓	(1) [14]

QUESTION 5: TERMINOLOGY (LATHE AND MILLING MACHINE) (SPECIFIC)

5.1 Advantages of tailstock set-over method:
• The automatic feed of the machine can be used.
$$\checkmark$$

• Good finish. \checkmark
• Long tapers can be cut. \checkmark
• Accurate tapers can be cut. \checkmark
• Accurate tapers can be cut. \checkmark
• Experience less operator fatigue. \checkmark
5.2.1 Tool:
Boring bar. \checkmark (1)
5.2.2 Diameter of taper:
 $\tan \frac{\theta}{2} = \frac{D - d}{2 \times l}$
 $\tan \frac{\pi}{2} = \frac{46 - d}{2 \times 155} \checkmark$ OR $\tan 3.5 = \frac{x}{155} \checkmark$
 $x = \tan 3.5 \times 155 \checkmark$
 $= 9,46 \text{ mm} \checkmark$

310 tan3,
$$5^{\circ} = 46 - d$$

 $d = 46 - 18, 96$
 $d = 27, 04 \text{ mm} \checkmark$
 $d = 46 - 2x \checkmark$
 $= 46 - 2(9, 46) \checkmark$
 $= 27, 04 \text{ mm} \checkmark$
(6)

5.3 **Calculation of parallel key:**

5.3.1 Width =
$$\frac{D}{4}$$

= $\frac{82}{4}$ \checkmark
= 20,50 mm \checkmark (2)
5.3.2 Thickness = $\frac{D}{6}$
= $\frac{82}{6}$ \checkmark

=13,67 mm ✓

(2)

5.3.3	$Lenght = 1, 5 \times diameter of shaft$	
	=1,5×82 🗸	
	=123 mm ✓	(2)

5.4 **Advantages of gang milling:**

- Several surfaces can be milled simultaneously. ✓
- Saving time. ✓
- Makes production more effective. ✓
- Fewer cutters need to be changed. ✓

(Any 3 x 1) (3) [18]

QUESTION 6: TERMINOLOGY (INDEXING) (SPECIFIC)

6.1 **Gear calculations:**

6.1.1 **Number of teeth:**

Module =
$$\frac{PCD}{T}$$

 $T = \frac{PCD}{m} \checkmark$
 $= \frac{156}{3} \checkmark$
= 52 teeth

(3)

6.1.2	Dedendum:			
	Dedendum = 1,157(m)		=1,25(m)	
	=1,157×3 🗸	OR	=1,25×3 🗸	
	= 3, 47 mm ✓		= 3,75 mm ✓	(2)

OD = PCD + 2(m)		= m(T+2)	
=156+2(3) ✓	OR	=3(52+2) ✓	
=162 mm 🗸		=162 mm ✓	(2)

6.1.4 **Circular pitch:** $CP = m \times \pi$ $= 3 \times \pi \checkmark$ $= 9,42 \text{ mm} \checkmark$

 \checkmark

(2)

6.2 **Dove tail calculations:**

$$W = 145 + 2(DE)$$

m = W - 2 (AC) - 2 (R) or m = W - 2 (AC + R)

6.2.1 Maximum width of dove tail (W):

Calculate DE:

$\frac{D}{E} \checkmark$ $\frac{D}{E} \checkmark$ $\frac{32}{an60^{\circ}}$ $3,48 \text{ mm} \checkmark$

$$W = 145 + 2(DE) \checkmark$$

= 145 + 2(18, 48) \sqcap
= 145 + 36, 96
= 181, 96 mm \sqcap (6)

6.2.2 **Distance between the rollers (m):**

Calculate AC:

=116,40 mm

$$\tan \alpha = \frac{BC}{AC} \checkmark$$

$$AC = \frac{BC}{\tan \alpha} \checkmark$$

$$= \frac{12}{\tan 30^{\circ}}$$

$$= 20,78 \text{ mm} \checkmark$$

$$m = W - 2 (AC) - 2(R) \checkmark$$

$$m = W - 2 (AC) - 2(R) \checkmark$$

$$m = W - 2 (AC) - 2(R) \checkmark$$

$$m = W - 2 (AC + R) \checkmark$$

$$m = W - 2 (AC + R) \checkmark$$

$$m = W - 2 (AC + R) \checkmark$$

$$m = W - 2 (AC + R) \checkmark$$

$$m = W - 2 (AC + R) \checkmark$$

$$m = W - 2 (AC + R) \checkmark$$

$$m = 181,96 - 2(20,78) - 2(12) \checkmark$$

$$m = W - 2(AC + R) \checkmark$$

$$m = 181,96 - 2(20,78 + 12) \checkmark$$

$$m = 181,96 - 65,56$$

$$\checkmark$$
 = 116,40 mm \checkmark (6)

6.3 Milling of spur gear:

6.3.1 Indexing:

Indexing =
$$\frac{40}{n}$$

Indexing = $\frac{40}{A}$
= $\frac{40}{160}$ \checkmark
= $\frac{1}{4} \times \frac{6}{6}$
= $\frac{6}{24}$ \checkmark

Approximate indexing:

No full turns and 6 holes on a 24-hole circle \checkmark

OR

No full turns and 7 holes on a 28-hole circle \checkmark (3)

6.3.2 Change gears:

$$\frac{D_{DR}}{D_{DN}} = (A - n) \times \frac{40}{A}$$

$$\frac{D_{DR}}{D_{DN}} = (160 - 163) \times \frac{40}{160} \quad \checkmark$$

$$= -3 \times \frac{40}{160}$$

$$= \frac{-120}{160}$$

$$= \frac{3}{4} \times \frac{8}{8} \quad \checkmark$$

$$\frac{D_{DR}}{D_{DN}} = \frac{24}{32} \quad \checkmark$$

(4) **[28]**

QUESTION 7: TOOLS AND EQUIPMENT (SPECIFIC)

7.1	Define hardness: Hardness is a material's ability to resist deformation, ✓ usually by indentation/penetration/scratching. ✓	(2)
7.2	Hardness testers:	
	 Brinell hardness tester ✓ Rockwell hardness tester ✓ Vickers hardness tester ✓ (Any 2 x 1) 	(2)
7.3	Microscope:	
	To measure \checkmark the diameter/depth of the indentation \checkmark left in the test material.	(2)
7.4	Tester:	
	7.4.1 Tensile tester ✓	(1)
	7.4.2 Hand wheel ✓	(1)
7.5	Hardness tester:	
	Rockwell hardness tester ✓	(1)
7.6	Moment and Force:	
	Test the reaction \checkmark on either side of simply loaded beam. \checkmark	(2)
7.7	Reading:	
	2,00 + 0,40 + 0,5 = 2,90 mm	(2)
		1.77

(4)

(9)

QUESTION 8: FORCES (SPECIFIC)

8.1 Forces:

8.1.1 Horizontal components:

$$\Sigma HC = 75\cos 35^{\circ} - 15\cos 45^{\circ} - 5\cos 0^{\circ} - 45\cos 60^{\circ}$$

$$\Sigma HC = 61,44 - 10,61 - 5 - 22,5$$

$$\Sigma HC = 23,33 \text{ N} \checkmark$$
(5)

8.1.2 Vertical components:

$$\sum VC = 75\sin 35^{\circ} + 15\sin 45^{\circ} - 5\sin 0^{\circ} - 45\sin 60^{\circ}$$

$$\sum VC = 43,02 + 10,61 - 0 - 38,97$$

$$\sum VC = 14,66 \text{ N } \checkmark$$

OR

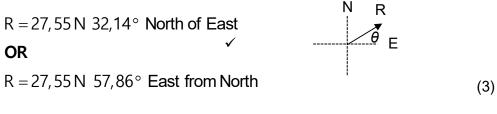
8.1.1 Σ HC/x = Fcos θ 8.1.2 $\sum VC/y = Fsin\theta$ Force θ $HC = 75\cos 35^{\circ}$ 25 N 90° 61,44 N ✓ VC = 75sin35° 43,02 N ✓ 10,61 N ✓ VC = 15sin135° 40 N 0° $HC = 15cos135^{\circ}$ 10,61 N 🗸 55 N 290° $HC = 5cos180^{\circ}$ -5 N $VC = 5sin180^{\circ}$ 0 N \checkmark 120 N 210° HC = 45cos240° -22,5 N ✓ VC = 45sin240° -38,97 N ✓ Total 23,33 N ✓ 14,66 N ✓

8.1.3 **Resultant:**

$$R^{2} = VC^{2} + HC^{2}$$

$$R = \sqrt{(14,66)^{2} + (23,33)^{2}} \checkmark$$

$$R = \sqrt{759,20}$$


$$R = 27,55N \checkmark$$
(2)

8.1.4 Angle and direction of resultant:
Angle:
$$\tan \theta = \frac{VC}{TTT}$$
 $\tan \theta = \frac{HC}{TTTT}$

HC VC

$$\theta = \tan^{-1}\left(\frac{14,66}{23,33}\right) \checkmark$$
 OR $\theta = \tan^{-1}\left(\frac{23,33}{14,66}\right) \checkmark$
 $\theta = \tan^{-1}(0,63)$ $\theta = \tan^{-1}(1,59)$
 $\theta = 32,14^{\circ} \checkmark$ $\theta = 57,86^{\circ} \checkmark$

Direction:

8.2 UDL Beam:

8.2.1	Distributed load: Uniform distributed load:			
	$UDL = 15 \times 6 \checkmark$			
	= 90 N ✓	(2)		

8.2.2 Reaction in support A: Take moments about B: $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $(160 \times 2,5) + (90 \times 7) + (55 \times 14) = (A \times 14)$ 400 + 630 + 770 = 14A $A = \frac{1800}{14}$

Reaction in support B: Take moments about A:

$$(B × 14) = (55 × 0) + (90 × 7) + (160 × 11,5)$$

14B = 0 + 630 + 1840
B = $\frac{2470}{14}$
B = 176,43 N ✓

(7)

8.3.1	Diameter: $\sigma = \frac{F}{A}$		$A = \frac{\pi \times d^2}{4}$
	$A = \frac{F}{\sigma} \checkmark$		$d = \sqrt{\frac{4A}{\pi}} \checkmark$
	$A = 3,19 \times 10^{-4}$	OR	$d = \sqrt{\frac{4 \times (3,19 \times 10^{-4})}{\pi}} \checkmark$
	$\frac{\pi d^2}{4} = 3,19 \times 10^{-4} \checkmark$		$d = \sqrt{\frac{\pi}{\pi}}$ = 0,02015 m
	$\pi \times d^2 = 1,28 \times 10^{-3}$		= 20,15 mm ✓
	$\sqrt{d^2} = \sqrt{4,06 \times 10^{-4}} \checkmark$		
	d = 0,02015 m		
	d = 20,15 mm ✓		

8.3.2 Change in length:

$$E = \frac{\sigma}{\varepsilon}$$

$$\varepsilon = \frac{\sigma}{E} \checkmark$$

$$\varepsilon = \frac{56,5 \times 10^{6}}{90 \times 10^{9}} \checkmark$$

$$\varepsilon = 6,28 \times 10^{-4} \checkmark$$

$$\varepsilon = \frac{\Delta L}{OL}$$

$$\Delta L = \varepsilon \times OL \checkmark$$

$$\Delta L = 6,28 \times 10^{-4} \times 0,275$$

$$\Delta L = 1,73 \times 10^{-4} m$$

$$\Delta L = (1,73 \times 10^{-4}) \times 1000$$

$$\Delta L = 0,17 mm \checkmark$$

✓

(6) **[33]**

(4)

QUESTI	ON 9: MAINTENANCE (SPECIFIC)		
9.1	 Preventative maintenance: Checking for wear and tear on belt. ✓ Checking belt alignment. ✓ Checking the tensioning devices. ✓ Checking the tensioning setting. ✓ Make sure all guards are in place. ✓ Checking for dirt on belt and pulleys. ✓ 	(Any 4 x 1)	(4)
9.2	 High power drives: Gear drive ✓ Multiple belt drives ✓ Tooth belt drives ✓ Chain drives ✓ 	(Any 2 x 1)	(2)
9.3	Bonding methods:		()
9.0	 Plastic welding (heat) ✓ Adhesive/PVC-Weld ✓ 		(2)
9.4	Uses of the materials:		
	 9.4.1 Nylon: Pulleys ✓ Ropes ✓ Bushes ✓ Gears ✓ Wear pads ✓ Wheels ✓ Rollers ✓ Gaskets ✓ Seals ✓ Machinery parts ✓ 	(Apy 2 x 1)	(2)
		(Any 2 x 1)	(2)
	 9.4.2 Fibreglass: Machine covers ✓ Roof covering ✓ Woven cloth ✓ 		
		(Any 2 x 1)	(2)

DBE/May/June 2024

9.4.3 Bakelite uses:

- Circuit boards ✓
- Electrical components ✓
- Electrical insulators ✓
- Kitchenware ✓
- Jewellery ✓
- Pipe stems ✓
- Toys ✓
- Distributor rotor ✓
- Distributor cap ✓
- Aircraft components ✓
- Bearings ✓
- Clutch linings ✓
- Brake linings ✓
- Laminated materials ✓

(Any 2 x 1) (2)

9.5 **Thermo-hardened/Thermosetting or Thermoplastic composite:**

9.5.4	Thermoplastic ✓	(1) [18]
0 5 4	The average stice of	(4)
9.5.3	Thermo-hardened / Thermosetting \checkmark	(1)
9.5.2	Thermo-hardened / Thermosetting \checkmark	(1)
9.5.1	Thermoplastic ✓	(1)

QUES	TION 10: JOINING METHODS (SPECIFIC)		
10.1	 Uses of multiple threads: Fire hydrants ✓ Valves ✓ Aircraft landing gear ✓ Industrial machines ✓ Lids of containers/jars ✓ Fly press ✓ 	(Any 3 x 1)	(3)
10.2	 Multiple screw threads: They provide more bearing surface. ✓ Do not strip easily. ✓ To provide faster linear movement. ✓ They are more efficient. ✓ They lose less power to friction. ✓ 	(Any 3 x 1)	(3)
10.3	Square Thread:		
	10.3.1 Pitch: Pitch = $\frac{\text{Lead}}{\text{Number of starts}}$ = $\frac{46}{2} \checkmark$		

10.3.2 **Pitch diameter:** $D_{m} = OD - \frac{P}{2}$ $= 80 - \frac{23}{2} \checkmark$ $= 68,50 \text{ mm} \checkmark$

= 23 mm 🗸

10.3.3 Helix angle of the thread:

$$\tan\theta = \frac{\text{Lead}}{\pi \times D_{\text{M}}}$$
$$= \frac{46}{\pi \times 68,50} \checkmark$$
$$\theta \stackrel{\checkmark}{=} \tan^{-1}(0,213755544)$$
$$= 12,07^{\circ} \text{ or } 12^{\circ}4' \checkmark$$

(4)

(2)

(2)

10.3.4 Leading tool angle:

Leading tool angle =
$$90^{\circ}$$
 - (helix + clearance angle)
= 90° - (12,07° + 3°) \checkmark
= 74,93° or 74°55' \checkmark (2)

10.3.5 **Following tool angle:**

Following tool angle =
$$90^{\circ}$$
 + (helix – clearance angle)
= 90° + (12,07° – 3°) \checkmark
= $99,07^{\circ}$ or $99^{\circ}4'$ \checkmark (2)
[18]

QUESTION 11: SYSTEMS AND CONTROL (DRIVE SYSTEMS) (SPECIFIC)

11.1 Hydraulic calculations:

11.1.1 The fluid pressure in the hydraulic system in MPa:

$$A (Plunger) = \frac{\pi d^2}{4}$$

$$A = \frac{\pi (0,03)^{-2}}{4} \checkmark$$

$$A = 0,71 \times 10^{-3} \text{ m}^2 \checkmark$$

$$P = \frac{F}{A}$$

$$P = \frac{900}{0,71 \times 10^{-3}} \checkmark$$

$$P = 1,27 \times 10^6 \text{ Pa}$$

$$P = 1,27 \text{ MPa} \checkmark$$
(5)

11.1.2 Mass in kg:

$$\frac{F_{A}}{A_{A}} = \frac{F_{B}}{A_{B}}$$

$$F_{B} = \frac{F_{A} \times A_{B}}{A_{A}} \checkmark$$

$$F_{B} = \frac{900 \times 31,42 \times 10^{-3}}{0,71 \times 10^{-3}} \checkmark$$

$$F_{B} = 39828,17 \text{ N}$$
Mass = 3982,82 kg **OR** 4059,96 kg \checkmark (4)

11.2 Function of hydraulic components:

11.2.1	Motor Drives the hydraulic pump. ✓	(1)
11.2.2	One-way-valve To prevent backflow of hydraulic fluid. ✓	(1)
11.2.3	Reservoir Contains the hydraulic fluid. ✓	(1)

11.3 Belt drive:

11.3.1 The rotational frequency in r/sec:

$$N_{DR} \times D_{DR} = N_{DN} \times D_{DN} \qquad N_{DR} \times D_{DR} = N_{DN} \times D_{DN}
N_{DR} = \frac{N_{DN} \times D_{DN}}{D_{DR}} \checkmark \qquad N_{DR} = \frac{N_{DN} \times D_{DN}}{D_{DR}} \checkmark
N_{DR} = \frac{5,83 \times 0,5}{0,09} \checkmark \qquad OR \qquad N_{DR} = \frac{350 \times 500}{90} \checkmark
N_{DR} = \frac{2,92}{0,09} \qquad N_{DR} = \frac{1944,44 \text{ r/min}}{60}
N_{DR} = 32,39 \text{ r/sec} \checkmark \qquad N_{DR} = 32,41 \text{ r/sec} \checkmark \qquad (3)$$

11.3.2 **Power transmitted in Watt:**

$$P = \frac{(T_1 - T_2) \pi D N}{60}$$

$$P = (1900 - 450) \pi \times 0,09 \times 32,39$$

$$P = 13279,18 W \checkmark$$

$$OR$$

$$P = \frac{(T_1 - T_2) \pi D N}{60}$$

$$P = (1900 - 450) \pi \times 0,5 \times 5,83$$

$$P = 13278,73 W \checkmark$$

$$OR$$

$$P = \frac{(T_1 - T_2) \pi D N}{60}$$

$$P = (1900 - 450) \pi \times 0,5 \times 350$$

11.4 **Avoid slipping:**

- Adding a belt tensioning device. ✓
- Not subjected to sudden loads. ✓
- Do not overload the drive. ✓
- Cover the drives to guard against dust and fluids. \checkmark
- Increase the contact area of the belts. \checkmark
- Use toothed belts and pulleys. ✓

(Any 2 x 1)

(2)

11.5 Gear drive:

11.5.1 **Number of teeth:**

$$\frac{N_{input}}{N_{output}} = \frac{Product of teeth on driven gears}{Product of teeth on driver gears}$$

$$\frac{N_{A}}{N_{D}} = \frac{T_{B} \times T_{D}}{T_{A} \times T_{C}}$$

$$T_{D} = \frac{N_{A} \times T_{A} \times T_{C}}{N_{D} \times T_{B}} \checkmark$$

$$T_{D} = \frac{3500 \times 33 \times 25}{1050 \times 55} \checkmark$$

$$T_{D} = 50 \text{ teeth } \checkmark$$
(3)

11.5.2 **Torque:**

$$P = \frac{2 \pi N T}{60}$$

$$T = \frac{P \times 60}{2 \times \pi \times N} \checkmark$$

$$T = \frac{(737,4 \times 10^3) \times 60}{2 \times \pi \times 1050} \checkmark$$

$$T = 6706,33 \text{ Nm} \checkmark$$

$$P = 2 \pi N T$$

$$T = \frac{P}{2 \times \pi \times N} \checkmark$$

$$T = \frac{P}{2 \times \pi \times 10^3} \checkmark$$

$$T = \frac{(737,4 \times 10^3)}{2 \times \pi \times 17,5} \checkmark$$

$$T = 6706,33 \text{ Nm} \checkmark$$

TOTAL: 200