

basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

SENIOR CERTIFICATE EXAMINATIONS/ NATIONAL SENIOR CERTIFICATE EXAMINATIONS

MECHANICAL TECHNOLOGY: FITTING AND MACHINING

2023

MARKING GUIDELINES

MARKS: 200

These marking guidelines consist of 25 pages.

Copyright reserved

Please turn over

QUESTION 1: MULTIPLE-CHOICE QUESTIONS (GENERIC)

1.1	C✓	(1)
1.2	A✓	(1)
1.3	A✓	(1)
1.4	C✓	(1)
1.5	B✓	(1)
1.6	A✓	(1) [6]

QUESTION 2: SAFETY (GENERIC)

2.1		rule after the work procedures: off the machine. ✓		(1)
2.2	 To prest Prest Prest 	vents the wheel from being damaged. \checkmark vents the work piece from being damaged. \checkmark	neel and tool	
	• Prev	vent injury. 🗸	(Any 2 x 1)	(2)
2.3	Worksh	nop layouts:		
	2.3.1	Process layout. ✓		(1)
	2.3.2	Product layout. ✓		(1)
2.4	SafeSafe	l ic press: ety goggles ✓ ety gloves ✓ ety shoes ✓ rall ✓	(Any 1 x 1)	(1)
2.5	• Top • Top	guard on the portable angle grinder: protect one against sparks/metal particles. ✓ protect one from a breaking disc. ✓ protect your hand from coming into contact with the disc	. ✓ (Any 1 x 1)	(1)
2.6	FolloKeeDo rEns	ng/Guillotine machine: ow the manufactures recommendations. ✓ p hands away from action points. ✓ not exceed the maximum material thickness. ✓ ure that all guards are in place and secure. ✓ port defects immediately. ✓	(4 m v 4 v 4)	(1)
			(Any 1 x 1)	(1)

2.7 **Storing gas cylinders:**

- Upright position ✓
- Stored at 20°C / cool area ✓
- Empty cylinders stored separately from full cylinder. ✓
- Never store cylinders on top of each other. ✓
- Oxygen cylinders separate from fuel cylinders. ✓
- Secure gas cylinders. ✓
- Ensure that cylinders are properly closed. ✓
- Stored away from sparks / flammable material/ electrical switches. ✓
- Stored in a well-ventilated area. ✓
- Safety signs should be displayed. ✓
- Keep cylinders clearly labelled (Full/Empty). ✓

(Any 2 x 1) (2)

[10]

QUESTION 3: MATERIALS (GENERIC)

Purpose of tempering:

3.1

	• Toi	relieve ✓ strain / brittleness. ✓ Increase ✓ the toughness of the steel. ✓ refine ✓ grain structure. ✓				
		(Any 1 x 2)	(2)			
3.2	Heat tre	atment processes:				
	3.2.1	 Case hardening: To obtain a wear-resistant surface ✓ and at the same time be tough enough internally at the core ✓ to withstand the applied loads. For a hard case ✓ over a tough core. ✓ (Any 1 x 2) 	(2)			
	3.2.2	 Annealing: To relieve ✓ internal stresses. ✓ To soften ✓ steel. ✓ Facilitate ✓ the machining processes. ✓ Increase ✓ the steel's ductility. ✓ Reduce ✓ brittleness. ✓ 	(2)			
	• • • •		(2)			
3.3		est: steel against grinding wheel. ✓ erve the spark pattern to identify the type of steel. ✓	(2)			
3.4	Tests:					
	3.4.1	Filing test: File on the tip or near the edge \checkmark of the material. The bite will determine the hardness. \checkmark	(2)			
	3.4.2	 Bend test: Metal is subjected to deformation by bending. ✓ Observe the rupture of the metal. ✓ 	(2)			
3.5	Sound t	Sound test on steel:				
	3.5.1	Low carbon steel (LCS): Dull (low pitch)✓ sound.	(1)			
	3.5.2	High carbon steel (HCS): Loud and clear (high pitch) ✓ sound.	(1) [14]			

QUESTION 4: MULTIPLE-CHOICE (SPECIFIC)

4.1	B✓	(1)
4.2	B✓	(1)
4.3	A✓	(1)
4.4	D✓	(1)
4.5	C✓	(1)
4.6	C✓	(1)
4.7	A✓	(1)
4.8	B✓	(1)
4.9	B✓	(1)
4.10	D✓	(1)
4.11	C✓	(1)
4.12	A✓	(1)
4.13	A✓	(1)
4.14	C✓	(1) [14]

Screw-cutting dial:

- A. Lead screw ✓
- B. Dial ✓
- C. Worm wheel / worm gear ✓

5.2 **Taper:**

5.1

5.2.1 Length of taper:

$$Tan \frac{\theta}{2} = \frac{D-d}{2 \times L}$$

$$Tan 5,5^{\circ} = \frac{D-d}{2 \times L}$$

$$L = \frac{D-d}{2 \times Tan 5,5^{\circ}} \checkmark$$

$$L = \frac{65-45}{2 \times Tan 5,5^{\circ}} \checkmark$$

$$L = 103,85 \text{ mm} \checkmark$$
(4)

5.2.2 **Tailstock set-over:**

$$x = \frac{L(D-d)}{2 \times l} \qquad x = \frac{D-d}{2} \checkmark$$

$$x = \frac{103,85(65-45)}{2 \times 103,85} \checkmark \qquad \text{OR} \qquad x = \frac{65-45}{2} \checkmark$$

$$x = 10 \text{ mm} \checkmark \qquad x = 10 \text{ mm} \checkmark$$
(3)

5.3 Parallel key:

Width:

5.3.1 Width =
$$\frac{D}{4}$$

= $\frac{70}{4}$ \checkmark
= 17,50 mm

 \checkmark

(2)

(3)

Thickness:

5.3.2 Thickness
$$= \frac{D}{6}$$

 $= \frac{70}{6} \checkmark$
 $= 11,67 \text{ mm} \checkmark$ (2)

Length:

5.3.3 Length = 1,5 x diameter of shaft
= 1,5 x 70
$$\checkmark$$

= 105 mm \checkmark (2)

5.4 **Mean diameter:**

Mean Diameter =
$$OD - (\frac{1}{2} \times P)$$

= $38 - 2 \checkmark$
= $36 \text{ mm} \checkmark$ (2)
[18]

QUESTION 6: TERMINOLOGY (INDEXING) (SPECIFIC)

6.1 **Cutting gear:**

6.1.1 **Number of teeth:**

Module =
$$\frac{PCD}{T}$$

Teeth = $\frac{PCD}{Module}$
= $\frac{120}{3}$ \checkmark
= 40 teeth \checkmark

(3)

6.1.2 **Dedendum:**

Dedendum = 1,157(m)		= 1,25(m)	
= 1,157 x 3 ✓	OR	= 1,25 x 3 ✓	
= 3,47 mm ✓		= 3,75 mm ✓	(2)

6.1.3 **Outside diameter:**

OD = PCD + 2(m)		= m(T + 2)	
= 120 + 2(3) ✓	OR	= 3(40 + 2) 🗸	
= 126 mm ✓		= 126 mm ✓	(2)

6.1.4 **Circular pitch:**

$$CP = m \times \pi$$

= 3 x $\pi \checkmark$
= 9,42 mm \checkmark (2)

6.2 **Dovetail:**

6.2.1 **Angle θ**:

$$(x)AC = \frac{166,96 - 112,32 - 2(10)}{2 \checkmark} \checkmark$$

= 17,32 mm \lambda

$$Tan \alpha = \frac{BC}{AC}$$

$$Tan \alpha = \frac{10}{17,32} \checkmark$$

$$\alpha = 30,00^{\circ} \checkmark$$

$$\theta = 30^{\circ} \times 2$$

$$\theta = 60^{\circ} \checkmark$$

(6)

6.2.2 Minimum width (w) distance:

DE:

$Tan \frac{\theta}{2} = \frac{DE}{AD}$ ✓ DE = tan θ x AD = tan 30° x 32 ✓ = 18,48 mm ✓	$Tan \theta = \frac{AD}{DE}$ $DE = \frac{AD}{Tan \theta} \checkmark$ $= \frac{32}{Tan60^{\circ}} \checkmark$ $= 18,48 \text{ mm} \checkmark$
w = $166,96 - 2(DE) \checkmark$	

$$= 166,96 - 2(18,48) \checkmark$$

= 166,96 - 36,96
= 130 mm \checkmark (6)

6.3 Milling of spur gear:

6.3.1 Indexing:

Indexing =
$$\frac{40}{N}$$

= $\frac{40}{140}$ \checkmark
= $\frac{2}{7} \times \frac{4}{4}$
= $\frac{8}{28}$ \checkmark

Approximate indexing: 8 holes on a 28-hole circle \checkmark

OR

12 holes on a 42-hole circle ✓

OR

14 holes on a 49-hole circle \checkmark

(3)

6.3.2 Change gears:

$$\frac{Dr}{Dn} = (A - n) \times \frac{40}{A}$$

$$\frac{Dr}{Dn} = (140 - 137) \times \frac{40}{140} \checkmark$$

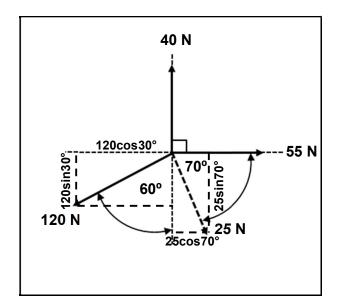
$$= 3 \times \frac{40}{140}$$

$$= \frac{120}{140}$$

$$= \frac{6}{7} \times \frac{4}{4} \checkmark \quad \mathbf{OR} \quad \frac{6}{7} \times \frac{8}{8} \checkmark$$

$$\frac{Dr}{Dn} = \frac{24}{28} \checkmark \quad \mathbf{OR} \quad \frac{48}{56} \checkmark$$

(4) **[28]**


QUESTION 7: TOOLS AND EQUIPMENT (SPECIFIC)

7.1	Hardne	Hardness indenters:					
	7.1.1	 Rockwell hardness tester: Diamond cone / Pyramid ✓ Hardened steel-ball indenter ✓ (Any 1 x 1) 	(1)				
	7.1.2	Brinell hardness tester: Hardened carbide steel-ball indenter ✓	(1)				
7.2	A. Haro B. Plati C. Plati	aockwell tester: dness indicator meter ✓ form ✓ form height adjuster ✓ vating knob ✓	(4)				
7.3	Identify screw thread:						
	7.3.1	Metric ✓	(1)				
	7.3.2	Crest diameter/Outside diameter/Major diameter/Nominal diameter \checkmark	(1)				
	7.3.3	Pitch ✓	(1)				
7.4	Screw t	hread micrometer:					
	 A. Adjustable anvil / Spindle ✓ B. Lock ✓ C. Barrel / Sleeve ✓ D. Ratchet / Ratchet stop ✓ 						

[13]

QUESTION 8: FORCES (SPECIFIC)

8.1 **System of forces:**

8.1.1 Horizontal component:

 $\Sigma HC = 55 \cos 0^{\circ} + 40 \cos 90^{\circ} - 120 \cos 30^{\circ} + 25 \cos 70^{\circ}$

$$\Sigma$$
HC = 55 + 0 - 103,92 + 8,55

$$\Sigma HC = -40,37 \text{ N} \checkmark$$

8.1.2 **Vertical component:**

 $\sum VC = 55 sin0^{\circ} + 40 sin90^{\circ} - 120 sin30^{\circ} - 25 sin70^{\circ}$

$$\Sigma VC = 0 + 40 - 60 - 23,49$$

$$\Sigma VC = -43,49 N \checkmark$$

OR						
Force	θ	∑VC/y = Fsinθ		∑HC/x = Fcosθ		
55N	0°	VC = 55sin0°	0 N	HC = 55cos0°	55 N ✓	
40N	90°	VC = 40sin90°	40N ✓	HC = 40cos90°	0 N	
120N	210°	VC = 120sin210°	-60 N ✓	HC = 120cos210°	-103,92 N∕	
25N	290°	VC = 25sin290°	-23,49 N ✓	HC = 25cos290°	8,55 N ✓	
		Total	-43,49 N ✓		-40,37 N ✓	

(8)

(4)

(4)

8.1.3 **Resultant:**

$$R^{2} = VC^{2} + HC^{2}$$

$$\sqrt{R^{2}} = \sqrt{-43,49}^{2} + (-40,37)^{2} \checkmark$$

$$R = 59,34 \text{ N} \checkmark$$
(2)

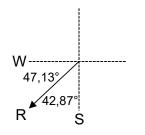
8.1.4 **Angle of resultant:**

$$\tan \theta = \frac{VC}{HC}$$

$$\theta = \tan^{-1} \left(\frac{-43,49}{-40,37} \right) \checkmark$$

$$\theta = \tan^{-1} (1,077)$$

$$\theta = 47,13^{\circ} \checkmark$$
(2)


8.1.5 **Direction of resultant:**

OR

R = 59,34 N $\,$ 42,87 $^{\circ}$ West of South $\,\checkmark\,$

OR

At a bearing of 222,87° \checkmark

(1)

8.2 UDL beam:

UDL:

8.2.1 UDL =
$$10 \times 9$$

= $90 \text{ N} \checkmark$ (1)

Reaction in support A:

8.2.2 Moments about B:

$$\sum LHM = \sum RHM$$

$$75 \times 12) + (90 \times 4, 5) = (A \times 9)$$

$$900 + 405 = 9A$$

$$A = \frac{1305}{9}$$

$$A = 145 \text{ N } \checkmark$$
(4)

Reaction in support B:

8.2.3 Moments about A: $\sum LHM = \sum RHM$ $B \times 9 + (75 \times 3) = (90 \times 4, 5) + (60 \times 9)$ 9B + 225 = 405 + 540 9B = 720 $B = \frac{720}{9}$ $B = 80 \text{ N } \checkmark$ (5)

8.3 **Stress:**

8.3.1 Side length in millimetres:

$$\sigma = \frac{F}{A}$$

$$A = \frac{F}{\sigma} \checkmark$$

$$L^{2} = \frac{45 \times 10^{3}}{9 \times 10^{6}} \checkmark$$

$$L = \sqrt{5 \times 10^{-3}} \checkmark$$

$$L = 0,07071 \text{ m}$$

$$L = 70,71 \text{ mm} \checkmark$$
(4)

8.3.2 The strain:

$$E = \frac{\sigma}{\varepsilon}$$

$$\varepsilon = \frac{\sigma}{E} \checkmark$$

$$\varepsilon = \frac{9 \times 10^{6}}{90 \times 10^{9}} \checkmark$$

$$\varepsilon = 1 \times 10^{-4} \checkmark$$
(3)

8.3.3 **The original length:**

$$\varepsilon = \frac{\Delta L}{L}$$

$$OL = \frac{\Delta L}{\varepsilon} \checkmark$$

$$OL = \frac{0.15}{1 \times 10^{-4}} \checkmark$$

$$OL = 1500 \text{ mm} \checkmark$$
(3)
[33]

QUESTION 9: MAINTENANCE (SPECIFIC)

9.1 **Reasons for conducting maintenance on an operating system:**

- To prevent failure ✓ of particular parts. ✓
- To prevent failure ✓ of whole system. ✓
- To ensure optimal ✓ operation. ✓

(Any 1 x 2) (2)

9.2 **Belts:**

- V belts ✓
- Wedge belts ✓
- Flat belts ✓
- Cogged belts/Toothed belts ✓
- Round belts ✓

(Any 3 x 1) (3)

9.3 **Preventative maintenance procedures:**

- Cleaning uncovered chain drives. ✓
- Check sprocket and link plate wear. ✓
- Refilling reservoirs lubricant or lubricating chains. ✓
- Checking functioning of tensioning devices. ✓
- Inspecting chains regularly for elongation. ✓
- Make sure that drives are properly fitted. ✓

(Any 3 x 1) (3)

9.4 **Properties:**

9.4.1 **Nylon:**

- Stiff ✓ (when it is short and thick)
- Tough ✓
- Low lubrication ✓
- Light ✓
- Can absorb shock ✓
- Can endure high temperatures ✓
- Non toxic ✓
- Strong ✓
- Hard ✓ (wear resistant)
- Chemical resistance ✓
- Recyclable ✓
- Flexible ✓ (when long and thin)

(Any 2 x 1) (2)

9.4.2 Fibreglass:

- Good fatigue resistance ✓
- Heat resistance ✓
- Tough ✓
- Semi rigid ✓
- Can be machined ✓
- Good chemical resistant ✓
- Strong ✓
- Water resistant ✓
- Flexible ✓
- Light weight ✓

(Any 2 x 1) (2)

9.4.3 **PVC:**

- Semi rigid ✓
- Flexible ✓
- Corrosion resistant ✓
- Tough ✓

(Any 2 x 1) (2)

9.5 **Use of each of the following materials:**

9.5.1 Bakelite:

- Casings ✓
- Electrical insulators ✓
- Kitchenware ✓
- Jewellery ✓
- Pipe stems ✓
- Toys ✓
- Distributor rotor ✓
- Disc brake systems ✓
- Saucepan handles ✓
- Electrical plugs ✓
- Parts in electrical appliance ✓
- Aircraft components ✓
- Bearings ✓
- Laminated materials ✓

(Any 1 x 1) (1)

9.5.2	 Carbon fibre: Sport equipment ✓ Bicycle frames ✓ Surf boards ✓ Boats ✓ Compressor/Helicopter blades ✓ 	(Any 1 x 1)	(1
9.5.3	Nylon: • Bushes ✓ • Gears ✓ • Pulleys ✓		
	 Ropes ✓ 	(Any 1 x 1)	(1
Vescor Yes ✓	nite:		(1 ['

9.6

QUESTION 10: JOINING METHODS (SPECIFIC)

10.1 Square thread:

10.1.1 **Pitch diameter:**

Lead = Pitch \times Number of starts

Pitch =
$$\frac{\text{Lead}}{\text{Number of starts}} \checkmark$$

= $\frac{46}{2} \checkmark$
= 23 mm \checkmark
D_p = OD - $\frac{P}{2}$

 $= 85 - \frac{23}{2} \checkmark$ = 73,50 mm \lambda (5)

10.1.2 Helix angle of the thread:

$$Tan \theta = \frac{Lead}{\pi \times D_{p}}$$

$$Tan \theta = \frac{46 \checkmark}{\pi \times 73,5} \checkmark$$

$$\theta = tan^{-1}(0,19921435)$$

$$= 11,27^{\circ} \checkmark$$
(3)

10.1.3 Leading tool angle:

Leading tool angle =
$$90^{\circ}$$
 – (helix + clearance angle)
= 90° – (11,27° + 3°) \checkmark
= 75,73° **OR** 75°43' \checkmark (2)

10.1.4 **Following tool angle:**

Following tool angle = 90° + (helix angle – clearance angle) = 90° + (11,27° – 3°) \checkmark = 98,27° **OR** 98°16' \checkmark (2)

10.2 **Square thread labels:**

- A. Crest diameter/Outside diameter/Major diameter/Nominal diameter \checkmark
- B. Effective diameter/Mean diameter/Pitch Diameter ✓
- C. Pitch ✓
- D. Helix angle ✓

(4)

10.3 **Cutting tools ground:**

The sides must be ground at an angle conforming to the helix angle \checkmark of the square thread with correct clearance angles. \checkmark (2)

[18]

QUESTION 11: SYSTEMS AND CONTROL (DRIVE SYSTEMS) (SPECIFIC)

11.1 **Hydraulic:**

11.1.1 **The fluid pressure in Pa:**

$$P = \frac{F}{A}$$

$$P = \frac{85}{0.25} \checkmark$$

$$P = 340 \text{ Pa} \checkmark$$
(2)

11.1.2 **Displacement of the ram:**

area ×I = AREA ×L

$$0,25 \times 0,09 = 2,1 \times L \checkmark$$

 $L = \frac{0,25 \times 0,09}{2,1} \checkmark$
L=0,010714285 m
L=10,71 mm ✓ (3)

11.1.3 **Force exerted by the ram:**

$$\frac{F}{A} = \frac{f}{a} \qquad P_{B} = \frac{F_{B}}{A_{B}}$$

$$F = \frac{f \times A}{a} \checkmark OR \qquad F_{B} = P_{B} \times A_{B} \checkmark$$

$$F = \frac{85 \times 2,1}{0,25} \checkmark \qquad F_{B} = 340 \times 2,1 \checkmark$$

$$F = 714 \text{ N } \checkmark \qquad F_{B} = 714 \text{ N } \checkmark$$

11.2 **Types of hydraulic pumps:**

- Radial pump ✓
- Rotary pump ✓

11.3 **Hydraulic valve:**

- Directional control valve ✓
- Non-return valve/check valve ✓
- One-way valve ✓
- Pressure relief/release valve ✓

(Any 1 x 1) (1)

(3)

(2)

Diameter of the driven pulley: 11.4.1

$$N_{DN} \times D_{DN} = N_{DR} \times D_{DR}$$

$$\mathsf{D}_{\mathsf{DN}} = \frac{\mathsf{N}_{\mathsf{DR}} \times \mathsf{D}_{\mathsf{DR}}}{\mathsf{N}_{\mathsf{DN}}} \quad \checkmark$$

$$D_{DN} = \frac{2700 \times 210}{1000}$$

$$D_{\rm DN} = 567 \text{ mm} \checkmark$$
 (3)

/

11.4.2 **Power transmitted in kW:**

$$P = \frac{(T_1 - T_2) \pi D N}{60}$$

$$P = \frac{(400) \pi \times 0.21 \times 2700}{60}$$

$$P = \frac{(400) \pi \times 0.21 \times 2700}{60}$$

$$P = 11875,22 \text{ Watt}$$

$$P = 11,88 \text{ kW} \checkmark$$

$$P = 2 \times \pi \frac{1000}{60} \times FR$$
$$P = 2 \times \pi \frac{1000}{60} \times 400 \times 0,2835$$

OR

$$P = 2 \pi NT$$

$$P = 2 \times \pi \frac{2700}{60} \times FR$$

$$P = 2 \times \pi \frac{2700}{60} \times 400 \times 0,105$$

$$P = 11875,22 Watt$$

$$P = 11,88 \text{ kW}$$
 (4)

Copyright reserved

11.5 Gear drive:

11.5.1 **Rotational frequency of the input shaft N**_A:

N _{input}	Product	of the	number	of teeth	on	driven	gears
N _{output}	Product	of the	number	of teeth	on	driving	gears
$\frac{N_A}{N_D} =$	$= \frac{T_{B} \times T_{D}}{T_{A} \times T_{C}}$						
$\frac{N_{A}}{800}$ =	$=\frac{22\times40}{40\times18}$	\checkmark					
N _A =	$=\frac{22\times40}{40\times10}$	× 800 18	\checkmark				
N _A =	= 977,78	r/min ✔					
N _A =	= 16,30 r/	sec 🗸					

11.5.2 **Speed ratio:**

Speed ratio =
$$\frac{N_{input}}{N_{output}}$$

Speed ratio = $\frac{977,78}{800}$ \checkmark
Speed ratio = 1,22 : 1 \checkmark (3)

11.6 **Torque:**

$$P = 2\pi NT$$

$$T = \frac{P}{2 \times \pi \times N} \checkmark$$

$$T = \frac{11000}{2 \times \pi \times 5} \checkmark$$

$$T = 350,14 \text{ Nm} \checkmark$$
(3)
[28]

(4)